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This paper is concerned with the problem of diagonally scaling a given
nonnegative matrix a to one with prescribed row and column sums. The
approach is to represent one of the twd scaling matrices as the solution
of a variational problem. This leads in a natural wa} to necessary and suf-
ficient conditions on the zero pattern of a so that such a scaling exists.
In addition the convergence cf the successive prescribed row and column sum
normalizatior;s is established. Certain invariants under diagonal scaling
are used to actually compute the des.ired scaled matrix, and examples are

provided. Finally, at the end of the paper, a discussion of infinite systems

is présented.
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SIGNIFICANCE AND EXPLANATION

In order to avoid heavy round-off error when solving large systems of
linear equations on the computer, it is useful to scale the coefficient matrix.
This scaling amounts to multiplying the matrix by diagonal matrices on the left
and right. We consider nonnegative coefficients and concern ourselves with the
problem of choosing appropriate diagonal matrices in order that the scaled
matrix have certain prescribed row and column sums. 1In addition, if some of
the coefficients are zero, we ask if this can at all be done.

Our approach is to replace the scaling problem by an equivalent problem
of finding the minimum of a certain function. This facilitates much of the
analysis and leads in a natural way to necessary and sufficient conditions on
the pattern of zeros in the coefficient matrix. Included is a technique for
actually computing the appropriate scaling matrices, a number of examples

illustrating the results, and a discussion of infinite systems.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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A VARIATIONAL EQUIVALENT TO DIAGONAL SCALING

Marc A. Berger and C. T. Kelley

Introduction

In this paper we present a new approach to the problem of diagonally scaling a non-
negative mxn matrix a to one with prescribed row and colummn sums ¢ and 6 ; and
to the question of convergence of the successive ¢ and 4§ row and column sum normali-

zations of a . Our methods show this equivalent to the problem of minimizing

n 1§ 6j
m( a..t.)
j=1 =1 431

m 5 .
over :li+ (positive vectors in Rn) subject to

m o
Ht‘i=1.

=1 1

And this leads us in a natural way to conditions on the pattern of zero elements in a
(Theorem 2.D). The main computational result underlying the theoretical parts of the
paper states that the solution to the ‘above minimum problem is given by (3.12).

In §1 we present the problem aﬂd the tools employed to solve it. In §2 the existence,
non-existence, uniqueness and convergence results are presented for finite systems. 1In
§3 certain invariants under diagonal scaling are described, and used to actually compute
the desired scaled matrix. And some examples are provided. Finally, in the last section
a discussion of infinite systems, using functional analysis, is presented.

The results in §2 concerning the scaling and convergence questions are not new. The
original work involved doubly stochastic matrices, and appears in Sinkhorn [7], Sinkhorn
and Rhopé [8]1, Menon [5], and Brualdi, Parter and Schneider ([3]. The generalization to
non-square matrices and arbitrary positive o and § appears in Bacharach (1], Brualdi (2],
and Menon and Schneider [6].

The approach of representing the solution in terms of a variational problem is used

by Theil [9] and Gorman [4]. The former minimizes

b
by log L
ij
over positive matrices b having ¢ and 6§ as row and column sums. And the latter

minimizes

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the National
Science Foundation under Grant No. MCS75-17385 AOl.
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over RT“ . The problem we formulate, however, is tied directly to the Menon operator

m n €.+

in (5], and leads in a most natural and direct way to the full admissibility condition of

Theorem 2.D.

§1. [Ihe Scaling Problem
let 0 and & be positive vectors in Rm and Rn, respectively, satisfying
m n
(1.1) ) o, = Y8 s
i=1 j=1 J

And let ¢ denote the set of nonnegative matrices a in R™ @ R" with no vanishing

rows or columns. Define normalizing operators R and C from & into itself by

X il & =
(1.2) (Ra), 5 = aii(,,zl a;) o . (Ca)yL=ay, (kzl 3y sj.
Iet
@.3) A=CrR .

The reader can verify that
(1.4) FN) = F(C) nF(R) = F(C,R)
over the set R:'n of positive matrices in r" @ Rn, where 3 denotes the set of fixed

points. Of course, over & , J(A) is strictly larger than 9(C,R). We concern ourselves
with the following two problems.

For which a € ¢ does the sequence

(p,) ;
1 {ANa} converge to a limit in J(C,R), and to what limit?

For which a € ¢ do there exist positive diagonal matrices x and y
® such that xay ¢ ¥(C,R), and are they unique up to scalar multiples?
Let R:_' denote the set of positive vectors t in Rm. For a fixed a €¢ we
associate an operator A = A(a) from R: into itself by

‘z‘ 'E g
1.s) o), =[] a 6 ( % e B
B e B i

This operator was defined by Menon in [5], and was used by Brualdi, Parter and Schneider

in [3] to analyze (Pz) when J(C,R) is the assignment polytope Qn . It was also used

by Menon and Schneider in [6] to analyze (Pz) in the more general setting put forth here.

Q=

|
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We note that if At=t then the matrix b defined by

m
-1
(1.6) by = ayyl kgl At 8

is in JF(C,R). And conversely, if b of the form bij = aijtisj is in ¥(C,R), then

At=t. Furthermore,

m
N N-1 0 -1, ,N-10
o7 S 3 :
a.mn n7a), aurkzl%(x €)1 e, 8
where
0 o -1
(1.8) t, = ( a. .y a .
i jzl ij i
And by inverting this it follows that
N n
(1.9) O, =t 10 T aFa a7t
k=0  j=l i3
Thus )X allows one to consider both (Pl) and (Pz).

We show in the next section that solving At=t corresponds to minimizing

n m 6, m -0,

m( 2 aijti) I g ti S . This leads us in a natural way to conditions on o and ¢ ,
j=1 i=1 i=1
relative to the pattern of zeros in a , such that (Pl) and (Pz) may be solved. In the

third section we construct invariants of a under C and R which allow one to compute
the limit of ‘{ANa}. Finally, in the last section we discuss the case where one or both

of m and n are infinite, and solve analogs of (Pl) and (Pz) in this setting.

§2.
Consider the function ¢ defined on :R: by
n m § 3 m -0,
(2.1 () = N ( } a;5t;) Ioe ™ .
j=1 i=1 i=1

The condition V log ¢(t) = 0 is equivalent to At=t. Thus if ¢ has a critical point
in ll: then, in accord with the remarks in the previous section, there exist positive
diagonal matrices x and y such that xay ¢ J(C,R). We consider the problem of mini-
mizing ¢ . It follows from (1.1) that ¢ is homogeneous in t , and thus it suffices to

impose the constraint t ¢ B , where

m
(2.2) B= ftemR : ] t, =1}
+ i=1 i

-3

A!;
iﬁ
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If a € R:'n then © tends to infinity as t approaches the boundary 9B from inside
of B . And since ¢ is continuous in B , it follows that a minimum exists in B .
However, if some of the elements of a vanish, then this need not be the case. In fact, if
F is a proper subset of % = 1,...,m} and F' is its complement, we can examine the

* *
behavior of ¢(t + ete) as € tends to zero; where ti is zero for i € F and positive

for ieF' ,and T_c rzf with T_ =1 for i ¢F . The condition that the limit be
’
infinite is
(2.3) P o6 7 &
jeC(F) 7 ieF
where
(2.4) c(F) = {3 : a = 0 for each k € F'} .

Furthermore, note that C(F) is empty unless F contains one of the sets

(2.5) B ® {i: a, >0}

Theorem 2.A:

Let a €@ be such that (2.3) holds for all proper subsets F which are unions of

the sets FR, in (2.5). Then there exist positive diagonal matrices x and vy

such that xay e ¥(C,R), and they are unique up to scalar multiples.

Proof:
*
First we establish (2.3) for any proper subset F . Let F be the union of the F,
* *
contained in F. Then F c¢F and C(F ) = C(F). Therefore (2.3) must hold for F ,

*
since it holds for F .

* * *
let t € 3B. Then 1lim &(t + e-re) = ®» whenever t + 10 € R: . Thus it follows
€40

that lim, ®(t) = ». This means that ¢ has a minimum in B , and thus that x and y
e
exist.

To establish uniqueness it suffices to show that if : and k:; are in J(C,R)

where ; and ;’ are positive diagonal matrices then : = ?t‘ : ;" .

NN
-xiy)-o.

. N, v v L v
(2.6) ) aij(l ~ xiyj) = Ja 3

1
i=1 ju 13

-4-




~ ~
Scale ; and ; so that each xi <1 and each yj > 1, and at least one element is

- equal to one. Say ;\(‘i = 1. Then it follows from (2.6) that ;j = 1 whenever 'abi 5 > 0.
; 0 0
{ N N
§ Thus ai 3 = ai j ;i ;j for every j , and moreover, some ;j = 1. Then similarly
N ’\:0 N ’\:0 0 0 N Ny
\ QUL wmg . XY for every i . That is, the i _~-th row and j_-th column of a - xay
i]o i]o i jo 0 0

vanish. So we delete them and consider the (m-1) x (n-1) case. Continuing this reduc-
" N
tion, eventually either one or both of x and y reduce to a single element. And this

case is trivial. ®

Theorem 2.B:

Under the conditions of Theorem 2.A, the seguence' {ANa} converges to xay .

Proof:
It follows from (1.7) and the uniqueness result that the convergence of {ANto} to

an interior fixed point t of A , implies the convergence of '{A“a} to xay. Suppose

ety where a denotes the transpose

E first that there exists P such that (a;)p € RT
of a . Then for any distinct vectors u and v in :IR: with u < v , we not only have

Au < Av , but (Apu)i < HPV)i for every i . Now let t be an interior fixed point of

: ! ‘ A , and let [uo.Bo] be the smallest interval such that agt < t° < Byt . Then
t." : a.ot < M:o < Bot and we can reduce the interval [ao,Bo] to the smallest [al,Bll such
i that ot < A < Blt. Continuing in this manner we generate a sequence of nested inter-
i vals [qN,SN] such that

2.7 Bt < AL £ B

and [°N'BN] is the smallest such interval. This nested sequence converges to [a,B] ,

: and it suffices now to show that a = 8.
3 i Y 0
So suppose a # B and let t = 1lim A~ t  be any cluster point of the sequence
k -+
*
%), Then at <t < Bt and [o,B] is the smallest such interval. But then

e N +P .
4 t = 1lim A k to is another cluster point, and ati < ti < Bti for every i ; and this
y fockes

contradicts the minimality of [a;B]. Thus a = B.

Suppose next that no powers of aa are positive. Then, since aa has a positive

B diagonal, it can be written as a direct sum of blocks bq over subspaces
R = {t er": ¢t

q

isO,iqu}

. G




where Fqc zn , and each bq has a positive power. And ) can accordingly be decomposed

into operators Aq acting on ]R:H_ , the set of positive vectors in n: . Thus it suffices -
to establish the convergence of {x: to'q}, where to’q is the corresponding restriction of

t:o to m: . Furthermore, this will follow immediately from the first part of this proof, ¥
as long as each kq has fixed points in R:'+ . And this is immediate from Theorem 2.A,

which establishes fixed points for A in R .®

Theorems 2.A and 2.B solve (Pl) and (PZ) under conditions (2.2). In particular we

note that under these conditions there always exists a matrix b ¢ F(C,R) such that

aij =0 if and only if bij = 0. What we show below is that if there exists any F such
that
(2.8) LT

jeC(F) 7 ieF

then no such b exists, even if we allow b to have extra zeros. And therefore for these
a €ed no diagonal matrices x and y exist for (Pz). And {ANa} does not converge to

a limit in &(C,R).

Theorem 2.C:
Suppose a €@ is such that (2.8) holds for some F . Then for no b €eZ n F(C,R)
is it true that a.,. = 0 implies b,. =0 .
e e e ) == ]

Proof:

Suppose such a b exists. Then (2.8) holds for b even if b has more zeros than

a , because this will only serve to enlarge C(F). But then 3
m m
Z°i=22b13122 bj=z Zbij=§: Zbij=z 6j
ieF i€eF j=1 ieF jeC(F) jeC(F) ieF jeC(F) i=1 jeC(F)

which is a contradiction. ® i

Finally we wish to consider the case where

(2.9) /: By = 1 o
jeC(F) ieF

for some proper subset(s) F , (2.3) holding for the others. 1In this case in order that
x and y solving (Pz) exist, it is necessary that

(2.10) aij-O s LEF  J e
for those F satisfying (2.9). This is simply because it is necessary that X, a,

139 = 0 o

-6=




ie€F , 3je C(F)'. The result below shows that these conditions are sufficient as well.
In order to avoid cumbersome hypotheses we summarize these conditions in a definition.

Thus a € ¢ will be called fully admissible if (2.3) or (2.9) hold for every proper sub-

set F ; and (2.10) holds for those F satisfying (2.9).

Theorem 2.D:

a €@ is fully admissible if and only if there exist diagonal matrices x and y

solving (Pz). And under these conditions : {Aua} converges to xay .
Proof:

sufficiency has already been established in the discussion above. To prove necessity
we can assume (2.9) holds for some proper subset F . Otherwise the existence of x and
y follows directly from Theorem 2.A. Because of (2.10) we can reduce the problem to the
two sub-matrices (aij :1i€eF, j e C(F)) and (aij :i€F', JjeC(F)'). Both of these
sub-matrices are fully admissible and their dimensions are strictly less than those of a .
Thus an_induction establishes the existence of diagonal matrices x' and y', x" and y"
solving (P2) fo:.t these smaller matrices. And x',x" and y',y" can be pieced together

to construct diagonal matrices x and y solving (Pz) for a .

The vector (xi) is a fixed point of ) , and its existence is enough to justify the

proof of Theorem 2.B. ®

If a €4 is not fully admissible, but is such that (2.3) or (2.9) hold for every

proper subset F , then a is said to be partially admissible. For such a matrix a ,

there will not exist b e# n F(C,R) having the same zero pattern as a . (But if we
allow b to have extra zeros, then such matrices b will exist.) Thus Theorem 2.D
amounts to saying that whenever there exists a matrix in ¢ n ¥(C,R) having the same zero
pattern as a , then x and y exist, and conversely. Hence ¢ defined by (2.1) has
critical points in :R'_:_l if and only if a is fully admissible. Finally we note that for
the doubly stochastic case, where m=n and ai = Gj =1 foreach i and j , full admis-

sibility reduces to a cardinality condition.




53. Invariants

Observe that if m is a k-cycle then

k -1
(3.1) I -asaeac
p=1 pip Ip 3

is invariant under C and R , provided it is well-defined. 1In fact it is invariant

o N
under any diagonal scaling xay. These ratios can be used to compute limA"a when
N

it exists, as illustrated by the following example.

Example 3.A:
Let
9 T
a= a 0 a23
Mg a0

and ai=6j=1 for each i and j . Then

r'=a a . a a_]'a-]'a'-1
12:2331 13732 21

is invariant. Thus

(o} M 1-u
lim ANa = 1-u 0 u
N = o
u 1-p 0
a0 1
3

where u=r (1+r3)"1 . And a diagonal scaling that leads to this is

a a
" 13 12 1-y
X = d:.ag( 1, T —lfu Wi o
23 32

N e & ¥ 1-w
e © A T L £

Finally, for general ¢ and § conditions (2.3) become

61.<az+a3' 62<al+o3' 63<ol+02.

From now on we assume that a has a positive row and column. Without loss of gener-

ality these may be the first row and colum. Then we can define a ratio matrix r by

=1 =L
a, .a..a a .

§E) Tiy T %45%11%1%44

This matrix is invariant under C and R , and can be used to define analogues of )\




and ¢. By writing the diagonal matrix x of (P,) in the form x; = t, a;i we are led

to consider the operator ) defined by

. 2 s1.=1
(3.3) (ae), = 1 {zuaj (kg LR LA
If Jit=t then the matrix b defined by
T -1 -1
(3.4) By ™ rij(kz1 Tyt gl " 8y ¢ Z 5t kl e B
is in &(C,R); and, conversely, if b of the form b,. = a, .t.a 1s is in %(C,R) then

i3 i3 17115

At=t. And the corresponding relationship between iterates of x and A is

N N 1 0 -1 ’N-1"0
(3.5) Wa) g =yl Z L B
where
(3.6) e RS,
1 5 G

And by inverting this it follows that

P N
(3.7) ey, wa 0t B 7o Sa), o g
k=0 j=1
Similarly the corresponding function to minimize is
ol n m S, m -6,
(3.8) oe) = 1 ¢) o EFT B oE
j=1 i=1 7 L

Prcblem (P2) amounts to seeking a matrix b with the same ratio matrix as a , having
prescribed row and column sums. And the uniqueness result in Theorem 2.A amounts to
saying that distinct matrices with identical row and column sums have distinct ratio
matrices. Finally, we note that because of (1.1) both ¢ and ; are homogeneous in t,

and thus it suffices to minimize

n m St
(3.9) Pey = 1 ( Y s €37
=1 =1 7
or
& n m 6.
(3.10) Y(e) = m( ) R
j=1 i=1 I
over m$ , subject to
m o,
(3.11) n ot =1
L
The solution to the former is
* =¥ n -
(3.12) G we K o 1 ] i T
k=0 j=1 &

and the solution to the latter is

(3.13) ti

A *

a1t




where ¢ and c are appropriate scale factors. The remainder of this section is devoted

to examples.
Example 3.B:
For the case m=n=2 the limit is

u Ul—u

61~u u+02-61

where p is a nonnegative solution of

2 St 2291
T (61 + oo Yu + e 0
22 22
provided a is nonsingular. Otherwise u = 0161(01+02)-1. If a22=o the condition (2.3)
becomes 62 < o) ¢ and if 62 = cl then p = 0. The corresponding variational problem is to
§ S, -G
minimize (s+1) 1(s+r22) 25 . X
0,40,
[
2
Here ¥ s = tl c
Example 3.C:
For the case m=2, n=3 the limit is
H n cl-u-n

Gl-u 62-n u+n+63-01

where u,n are nonnegative solutions of

) 228
MR e s Y
22 22
r_ 6 +6 £ 0 r. ..o 6
uzﬂm-(a1 & 3’2: 1_13 o= r32_in # :2 1‘11 =0 .

32 32 32

These reduce to a single cubic in u . If Ly = 1 then the first equation becomes
-1 " -
n= 6261 s EE I, = 1 then the second equation reduces to (61 + 63)u + G3n = 0161 .
-1 -1

And if T,, = Ty3 = 1 then u = 0161(01 + 02) and n = 0162(01+02) . The corres-

ponding variational problem is to

§ § o=y

sininize (s+1) *(s+g,.) ~(esr..) 8 T .

22 23

=10-




SR o b

Here, as before, s =t 3

Example 3.D:

For the case m=n=3, oi=¢sj=1 for each i and j ; if r or if

23" %32" 22" 33

r then the limit is a permuted matrix (i.e. all rows and columns are

22 T3y 233
permutations of one another). 1In the former case it is symmetric; in the latter, skew-

symmetric.

Example 3.E:

Let
it b & i 1
2! (o] 0 i i
it T Ty Eakls e
1 (0] g (0]
The conditions (2.3) become
0, < 61+64 ¢ O < <Sl+62 v 62 < ol+o3 .

Thus we can consider the case o, = 63. =1 for each i and j . The corresponding

variational problem is to

minimize (t1+t2+t3+t4)(tl+t3)(tl+t2+t3)(t1+t3+t4)

subject to t1t2t3t4 = 1

By symmetry t1=1:.3 and t_=t,. Thus we need to minimize

2 4
1.2

2
(t1 + 1)(2t1 + tl ) I

Letting s = ti the condition for a minimum is 853 + 852 = 1. The only positive solu-

tion is -i—(/g-l). Thus

This means that diagonal scaling matrices are

X = diag(tl,tz,ts,t4)

y = % diag(/s/5-11, t, /2/5-4 , {2/5-a )




T

and the limit xay is

AL T R S & e .

g ~x 5 2Tz 339

1 g 0 0 g

S A RS | R Gk 1 '

¥ i3 ‘gl pNye apege

1 = .q 0 g 0 f
-

where g = -21— (/S - 1) is the golden mean.

54. i init tri

In this section we consider the scaling of infinite matrices; i.e. one or both of m
and n is infinite. We assume n = «, and that o el!m and § € %, are positive
vectors satisfying (1.1). Denote by z: the Banach space of infinite mx«—matrices a

having real entries such that
© m

(4.1) Yokl
j=1i=1

Note that !,: is a Hilbert space for any m (even m=x). Let a ¢ !.: be positive, and

P P
1l = sl <=

consider the following analogue of (P2):

m o
Find t €R+ and s €R+ such that the matrix b given by bij = aijtis

b
satisfies
(Pz)' E lil
b oo=a ., L= 10 0m 3 o ARl P [ (S o
j=1 lj 1 i=1 ij j

The matrix b € L'; is said to be a solution of (Pz)' s

Theorem 4.A:

(P,))' has at most one solution.

Proof:
N N N
As in the proof of Theorem 2.A, we assume that a and (tiaijsj) are solutions of
(P)', and show that gi = tl ; i=1,...,m . Foreach i=1,...,m 3
m
n o
(4.2) t, = z a, t
i k=1 ik k

where o eli:"m is given by

-12- T




———

o
-1 n 6 -1
(4.3) ajk = 03 ti le aijakjéj sj o
We note that o satisfies
m m i
\ (4.4) k—z]_ aik=1 A R TR 121 “ikoi-ok’ k= 1,iceeP «
By Jensen's inequality
=t m
3 i <
(4.5) Yi z e < z uikyk ; > AR (PSR T
k=1

If m= », note that the sum on the left of (4.5) converges,as Y4 < 1. We have

1 1l 1
(4.6) a N, S ( a,,0,)y, = Y,
i=1 171 k=1 i=1 ik i’ 'k k=1 k 'k
and so
m
(4.7) ¥ - Z %oy i=1l,...,m.

=1
But of course the same argument can be used to show that
m
n n
(4.8) ¥e = ):a. ) A 1= N cem
i 0 ik 'k
for any integer n > 0. And by taking limits of sums it follows that

2 2
=l =) m =y, ~v,) |
(4.9) 61 LT Z ;e e 3 |
k=1 4
~ o
1f ti # tl for some i , then for all i =1,...,m |
2 |
m - (v, -v,) |
(4.10) T L e
k=1 |
Since, by (4.9), the inequality (4.10) cannot hold for i=1, it must indeed be true that ‘
1 t is a constant vector. ® |
‘ To consider the question of existence, suppose first that m < ». For N > 1 let
n. N N __m,N |
g™} o Z 8§, . According to Theorem 2.A there is a unique matrix a eR ' |
N i 3j + |
i=1 j=1 |
1 such that at:]. =a,,. t:l.q sb.l and
¢ £ 5 T T
N m
N N
(4.11) Nai =0, 70 s s aae i &= peSy oo wLd ;
=1t 1 e e S
|
Define |
q
N |
i ay ¢+ J< W |
- (4.12) by, =
ij

b =1J=




T

Theorem 4.B:

For the case m < », the sequence . {bN} defined by (4.12) converges in the norm

topology of l‘ln to the solution b of (P2)'.

Proof:
.| m . Nk
The sequence {b } is bounded in 9,2 and as such has a subsequence {b "} which

converges weakly to an element b € lr;. Clearly bij 20 4 =Y, ..M I=0.2,-00

Define functionals f 3 on 2: by
8 m
(4.13) fj (z) = izl zij , z € 22 i

N
By taking weak limits it follows that fj (b) =68, . Thus b e 2;' and {b k} converges

©

to b in the norm topology of zT . aa J biy=0; i i=1,...,m. Asin§3 define
j=1

rij by (3.2). Then, again by taking limits,

(4.14) =l By J = R 2L e e

BiiPun ™ Ty Py By o
And this shows that b is a solution to (Pz)'. L]

If we write bij = aijtisj then, as before, Mt=t , where A is given by (1.5).
And if R,C and A are defined on l:l by (1.2) and (1.3), then the same proof used for

Theorem 2.B can be used here to establish the following result.

Theorem 4.C:
The sequence " 1ANa) converges in !,T to the solution, b , of (P,))'.

For the case m = = the solution to (P))' can be constructed as follows. For n >1
® N

set k= Yoo, ¥ o, - According to Theorem 4.A there is a unique a" ¢ ll: of the
=1 Y i=1
form al?. = a .th}.‘ such that
ij ijij
v N Y N
(4.15) D N e R R RN SR TR PR T % [ S
o1 ij Ni i=1 ij 3

As before, define

(4.16) b,, =
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An argument similar to the one used to prove Theorem 4.B establishes the following

result.
Theorem 4.D:
For the case m = « , the sequence ‘(b“} defined by (4.16) converges in the norm

i '
topology of 2. to the solution b of (Pz) -
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